organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 1-bromo-2-naphthoate

Zong-Ling Ru and Guo-Xi Wang*

Department of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China Correspondence e-mail: aywgx@yahoo.com.cn

Received 23 November 2009: accepted 24 November 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.052; wR factor = 0.127; data-to-parameter ratio = 17.5.

In the molecular structure of the title compound, $C_{12}H_9BrO_2$, the methoxycarbonyl group is twisted by a dihedral angle of $29.8 (3)^{\circ}$ with respect to the naphthalene ring system. An overlapped arrangement is observed between parallel naphthalene ring systems of adjacent molecules, and the face-to-face distance of 3.590 (9) Å suggests there is $\pi - \pi$ stacking in the crystal structure.

Related literature

For the chemistry of naphthoate derivatives, see: Ballabh et al. (2005); Imai et al. (2006).

Experimental

Crystal data

C12H0BrO2	V = 1048.7 (4) Å ³
$M_r = 265.10$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.3614 (19) Å	$\mu = 3.89 \text{ mm}^{-1}$
b = 9.3014 (19) Å	$T = 298 { m K}$
c = 12.069 (2) Å	$0.4 \times 0.35 \times 0.2 \text{ mm}$
$\beta = 93.66 \ (3)^{\circ}$	

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.881, T_{\max} = 0.940$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 137 parameters $wR(F^2) = 0.127$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.41 \text{ e} \text{ Å}^-$ S = 1.06 $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$ 2400 reflections

10520 measured reflections

 $R_{\rm int} = 0.086$

2400 independent reflections

1751 reflections with $I > 2\sigma(I)$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

This work was supported by a start-up grant from Anyang Institute of Technology, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2693).

References

Ballabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des. 5, 1545-1553

Imai, Y., Takeshita, M., Sato, T. & Kuroda, R. (2006). Chem. Commun. 10, 1070-1072.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o3264 [doi:10.1107/S1600536809050466]

Methyl 1-bromo-2-naphthoate

Z.-L. Ru and G.-X. Wang

Comment

Naphthoate derivatives are an important class of chemical raw materials, which have found wide range of applications in catalytic reaction, coordination chemistry as ligand, dye industry, and which are also used in medicine as drugs, such as adapalene. Recently, a series of naphthoate compounds have been reported (Ballabh *et al.*, 2005; Imai *et al.*, 2006). As an extension of these work on the structural characterization, we report here the crystal structure of the title compound methyl 1-bromo-2-naphthoate.

The crystal data show that in the title compound (Fig.1), the two benzene rings are essentially coplanar and only twisted from each other by a dihedral angle of 1.11 (2)°. All the bond length are within the normal range. An overlapped arrangement is observed between parallel naphthalene ring systems of adjacent molecules, and the face-to-face distance of 3.590 (9) Å suggests there is π - π stacking in the crystal structure.

Experimental

The purchased 1-bromo-2-naphthoate (3 mmol, 795 mg) was dissolved in chloroform (20 ml) and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement

All H atoms bonded to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å(aromatic), C–H =0.96 Å(methyl), with $U_{iso}(H) = 1.2Ueq(aromatic)$ and $U_{iso}(H) = 1.5Ueq(methyl)$.

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Methyl 1-bromo-2-naphthoate

Crystal data	
C ₁₂ H ₉ BrO ₂	F(000)
$M_r = 265.10$	$D_{\rm x} = 1.6$
Monoclinic, $P2_1/c$	Μο Κα

F(000) = 528 $D_x = 1.679 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$

supplementary materials

Hall symbol: -P 2ybc a = 9.3614 (19) Å *b* = 9.3014 (19) Å c = 12.069 (2) Å $\beta = 93.66 (3)^{\circ}$ $V = 1048.7 (4) \text{ Å}^3$ Z = 4

Data collection Rigaku Mercury2

Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.881, T_{\max} = 0.940$ 10520 measured reflections

$\theta = 3.1 - 27.5^{\circ}$
$\mu = 3.89 \text{ mm}^{-1}$
T = 298 K
Block, colourless
$0.4 \times 0.35 \times 0.2 \text{ mm}$

Cell parameters from 1751 reflections

diffractometer	2400 independent reflections
Radiation source: fine-focus sealed tube	1751 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.086$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -12 \rightarrow 12$
$T_{\min} = 0.881, \ T_{\max} = 0.940$	$l = -15 \rightarrow 15$
10520 manual and and and	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.127$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.053P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
2400 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
137 parameters	$\Delta \rho_{max} = 0.41 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.51 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.29147 (5)	0.80840 (4)	0.47073 (3)	0.0664 (2)
C2	0.4234 (4)	0.6858 (3)	0.4033 (3)	0.0450 (8)
C1	0.5663 (4)	0.6855 (3)	0.4501 (3)	0.0485 (9)
C4	0.4815 (4)	0.5034 (4)	0.2735 (3)	0.0553 (9)
H4	0.4533	0.4410	0.2159	0.066*
C3	0.3790 (4)	0.5986 (3)	0.3159 (3)	0.0471 (8)
C5	0.6197 (5)	0.5021 (4)	0.3156 (3)	0.0608 (10)
H5	0.6849	0.4405	0.2852	0.073*
C6	0.6655 (4)	0.5916 (4)	0.4039 (3)	0.0512 (9)
C10	0.6150 (5)	0.7727 (4)	0.5411 (3)	0.0596 (10)
H10	0.5517	0.8347	0.5733	0.072*
C9	0.7542 (5)	0.7662 (5)	0.5817 (4)	0.0715 (12)
Н9	0.7842	0.8239	0.6417	0.086*
C8	0.8523 (5)	0.6753 (5)	0.5355 (5)	0.0774 (14)
H8	0.9468	0.6730	0.5642	0.093*
C12	0.0587 (5)	0.4584 (5)	0.1631 (4)	0.0812 (13)
H12A	0.0394	0.3588	0.1475	0.122*
H12B	0.0531	0.5120	0.0950	0.122*
H12C	-0.0107	0.4948	0.2112	0.122*
C7	0.8094 (5)	0.5901 (5)	0.4484 (4)	0.0699 (12)
H7	0.8754	0.5298	0.4174	0.084*
C11	0.2313 (4)	0.5993 (4)	0.2617 (3)	0.0552 (9)
O1	0.1996 (3)	0.4727 (3)	0.2164 (2)	0.0678 (7)
O2	0.1531 (4)	0.7005 (3)	0.2538 (3)	0.0835 (10)

Fractional atomic coordinates	and isotropic or equivalent	isotropic displacement parameters (A^2))

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0647 (3)	0.0697 (3)	0.0652 (3)	0.02213 (19)	0.0071 (2)	-0.01421 (18)
C2	0.050(2)	0.0373 (17)	0.0492 (19)	0.0072 (14)	0.0111 (17)	0.0042 (14)
C1	0.052 (2)	0.0429 (19)	0.051 (2)	0.0000 (16)	0.0059 (18)	0.0077 (15)
C4	0.062 (3)	0.049 (2)	0.056 (2)	0.0044 (18)	0.0101 (19)	-0.0056 (17)
C3	0.050 (2)	0.0426 (18)	0.0495 (19)	0.0051 (15)	0.0090 (17)	0.0060 (15)
C5	0.062 (3)	0.055 (2)	0.067 (2)	0.012 (2)	0.016 (2)	-0.0015 (19)
C6	0.048 (2)	0.047 (2)	0.059 (2)	0.0036 (16)	0.0093 (18)	0.0099 (16)
C10	0.058 (3)	0.052 (2)	0.068 (3)	-0.0023 (18)	-0.003 (2)	-0.0026 (18)
C9	0.073 (3)	0.065 (3)	0.075 (3)	-0.004 (2)	-0.006 (3)	-0.002 (2)
C8	0.054 (3)	0.079 (3)	0.098 (4)	-0.004 (2)	-0.010 (3)	0.015 (3)
C12	0.073 (3)	0.085 (3)	0.083 (3)	-0.014 (2)	-0.016 (3)	-0.009 (2)
C7	0.053 (3)	0.070 (3)	0.087 (3)	0.012 (2)	0.011 (2)	0.010 (2)
C11	0.058 (2)	0.055 (2)	0.053 (2)	-0.0032 (19)	0.0025 (18)	-0.0014 (17)
01	0.0675 (19)	0.0576 (16)	0.0759 (18)	-0.0024 (14)	-0.0136 (15)	-0.0074 (14)
02	0.067 (2)	0.0716 (19)	0.109(2)	0.0204 (15)	-0.0172 (19)	-0.0198 (16)

Geometric parameters (Å, °)

Br1—C2	1.901 (3)	C10—H10	0.9300
C2—C3	1.374 (5)	C9—C8	1.390 (7)
C2—C1	1.418 (5)	С9—Н9	0.9300
C1—C6	1.415 (5)	C8—C7	1.357 (6)
C1—C10	1.417 (5)	C8—H8	0.9300
C4—C5	1.360 (5)	C12—O1	1.436 (5)
C4—C3	1.425 (5)	C12—H12A	0.9600
C4—H4	0.9300	C12—H12B	0.9600
C3—C11	1.491 (5)	C12—H12C	0.9600
С5—С6	1.398 (5)	С7—Н7	0.9300
С5—Н5	0.9300	C11—O2	1.193 (4)
C6—C7	1.418 (5)	C11—O1	1.324 (4)
С10—С9	1.364 (6)		
C3—C2—C1	122.4 (3)	C1—C10—H10	119.8
C3—C2—Br1	120.7 (3)	C10—C9—C8	121.5 (4)
C1—C2—Br1	116.9 (2)	С10—С9—Н9	119.2
C6—C1—C10	118.1 (4)	С8—С9—Н9	119.2
C6—C1—C2	118.1 (3)	C7—C8—C9	119.7 (4)
C10—C1—C2	123.8 (3)	С7—С8—Н8	120.1
C5—C4—C3	121.1 (3)	С9—С8—Н8	120.1
С5—С4—Н4	119.4	O1—C12—H12A	109.5
С3—С4—Н4	119.4	O1—C12—H12B	109.5
C2—C3—C4	117.8 (3)	H12A—C12—H12B	109.5
C2—C3—C11	124.1 (3)	O1—C12—H12C	109.5
C4—C3—C11	118.1 (3)	H12A—C12—H12C	109.5
C4—C5—C6	121.2 (4)	H12B—C12—H12C	109.5
С4—С5—Н5	119.4	C8—C7—C6	121.0 (4)
С6—С5—Н5	119.4	С8—С7—Н7	119.5
C5—C6—C1	119.4 (4)	С6—С7—Н7	119.5
C5—C6—C7	121.4 (4)	O2—C11—O1	123.2 (4)
C1—C6—C7	119.3 (4)	O2—C11—C3	125.9 (3)
C9—C10—C1	120.4 (4)	O1—C11—C3	110.8 (3)
С9—С10—Н10	119.8	C11—O1—C12	116.3 (3)
C3—C2—C1—C6	0.2 (5)	C10—C1—C6—C7	-1.2 (5)
Br1-C2-C1-C6	177.9 (2)	C2—C1—C6—C7	179.4 (3)
C3—C2—C1—C10	-179.1 (3)	C6—C1—C10—C9	0.5 (5)
Br1-C2-C1-C10	-1.5 (4)	C2-C1-C10-C9	179.9 (4)
C1—C2—C3—C4	1.2 (5)	C1—C10—C9—C8	0.3 (6)
Br1—C2—C3—C4	-176.4 (2)	C10—C9—C8—C7	-0.4 (7)
C1—C2—C3—C11	-177.7 (3)	C9—C8—C7—C6	-0.3 (7)
Br1—C2—C3—C11	4.7 (4)	C5—C6—C7—C8	-178.7 (4)
C5—C4—C3—C2	-2.1 (5)	C1—C6—C7—C8	1.1 (6)
C5—C4—C3—C11	176.9 (4)	C2—C3—C11—O2	30.4 (6)
C3—C4—C5—C6	1.6 (6)	C4—C3—C11—O2	-148.5 (4)
C4—C5—C6—C1	-0.1 (5)	C2—C3—C11—O1	-153.4 (3)
C4—C5—C6—C7	179.7 (4)	C4—C3—C11—O1	27.7 (4)

C10—C1—C6—C5	178.6 (3)	O2-C11-O1-C12	-4.8 (6)
C2—C1—C6—C5	-0.8 (5)	C3—C11—O1—C12	178.9 (3)

